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Abstract

In this article, a formulation of a point-collocation method in which
the unknown function is approximated using global expansion in tensor
product Bernstein polynomial basis is presented. Bernstein polynomials
used in this study are defined over general interval [a, b]. Method incor-
porates several ideas that enable higher numerical efficiency compared to
Bernstein polynomial methods that have been previously presented. The
approach is illustrated by a solution of Poisson, Helmholtz and Bihar-
monic equations with Dirichlet and Neumann type boundary conditions.
Comparisons with analytical solutions are given to demonstrate the ac-
curacy and convergence properties of the current procedure. The method
is implemented in an open-source code, and a library for manipulation of
Bernstein polynomials bernstein-poly, developed by the authors.

1 Introduction

Bernstein polynomials are known because of their many useful properties [1].
When restricted to the unit interval they are used in the definition of Bézier
curves, which are very important tools in computer graphics. On their own,
they have enjoyed increased attention in recent years, specifically as means to
represent solutions to differential equations. Bhatti and Bracken [2] present a
Galerkin method which uses Bernstein polynomials as trial functions for solution
of two-point boundary value problem, Yousefi et. al [3] use Bernstein polyno-
mials in Ritz-Galerkin method to approximate solution of hyperbolic PDE with
an integral condition. Doha et. al. [4] present the solution method for high-
even-order ordinary differential equations.
Unlike all listed examples, which use Bernstein polynomials in some sort of
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Galerkin method, in this article we develope a collocation method. The mo-
tivation to do so comes from the nature of Bernstein polynomials themselves.
When function is expanded in Bernstein polynomial basis, the expansion coeffi-
cients also respresent the nodal values of the expanded function. For two-point
boundary value problems this leads to very simple implementation, allowing
direct imposition of the boundary conditions at the end-points of the inter-
val. When the unknown function is approximated as a global expansion in
Bernstein polynomials basis, and used in a point-collocation method, the ap-
proach becomes very similar to pseudospectral methods [5], [6] [7]. Unlike their
polynomial counterparts used in pseudospectral methods (e.g. Chebyshev and
Legandre), Bernstein polynomials are not orthogonal, and many examples of
basis transformation exist when this is necessary (eg. [8]).
For the present article we assume that L, the elliptic differential operator in
interior, and B, the boundary operator are linear, and that they define well
posed boundary value problem

L[u](x) = f(x), x ∈ Ω. (1)

B[u](x) = g(x), x ∈ ∂Ω. (2)

Where Ω ∈ R2 is a given rectangular domain.
In the remainder of the paper we give a brief review of Bernstein polynomial
properties, relevant to the proposed method. The solutions to PDEs defined
over two-dimensional domains can be represented by surfaces embedded in
three-dimensional Eucledian space. This serves as rationale of Section 3, in
which we describe surfaces defined by expansions in tensor product Bernstein
polynomial basis, also giving expressions for elliptic operators that we will use
subsequently. Then, in Section 4, we describe the fomulation of the proposed
collocation method. Finally we give couple of example solutions, as well as their
error, and convergence analysis in Section 5.

2 Properties of Bernstein Polynomials

In further discussion we consider only generalized Bernstein polynomials, those
defined over arbitrary interval [a, b], and simply call them Bernstein polynomials.
The Bernstein polynomials of nth degree form a complete basis over [a, b], and
are defined by

Bi,n(x) =

(
n

i

)
(x− a)i(b− x)n − i

(b− a)n
, i = 0, 1, ..., n, (3)

where binomial coefficients are given by(
n

i

)
=

n!

i!(n− i)!
. (4)

They satisfy symmetry Bi,n(x) = Bn−i,n(1− x), positivity Bi,n(x) ≥ 0, and
they form partition of unity

∑n
i=0Bi,n(x) = 1 on defining interval x ∈ [a, b]. For
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i = 0, and i = n, they have value equalt to one at x = a, and x = b, respectively.
Otherwise, they have a unique local maximum occuring at x = i/n, having the
value Bi,n(i/n) = iin−n(n− i)n−i

(
n
i

)
.

In a recent article [4], authors present explicit formula for calculation of arbitrary
order derivatives of Bernstein basis functions of any order defined over standard
interval [0, 1]. In an atempt to formulate collocation method for solution of
BVP’s over arbitary intervals, first step would be to write down this expression
for Bernstein polynomials defined for arbitrary interval.

Let Bi,n(x) define i − th basis function of n − th order, at point x, where
x ∈ [a, b], and i ∈ [0, n]. Then, the derivative of order p of such basis function
can be expressed as:

DpBi,n(x) =
n!

(n− p!)(b− a)p

min(i,p)∑
k=max(0,i+p−n)

(
p

k

)
Bi−k,n−p(x)

Useful proprerty of Bernstein basis functions is that they all vanish at end-
points of the interval, except the first and the last one, which are equal to one
at x = a and x = b respectively.

The factorial formula Eq. 4 for binomial coefficients is known not to be most
numerically efficient for large numbers, and the alternative representations exist,
most numerically efficient being the multiplicative formula, which we will use
here (

n

i

)
=

k∏
i=1

n− (k − i)
i

. (5)

3 Surfaces defined by tensor product of Bern-
stein polynomials

Following equations will help us in developing a collocation method using Bern-
stein polynomials for boundary value problems defined over two-dimensional
domains.

Let the following equation represent a surface in R3 defined by a tensor
product of Bernstein basis functions

f(x, y) =

n∑
i=0

m∑
j=0

βi,jBi,n(x)Bj,m(y). (6)

We can define p-th order partial derivative in x -axis direction in a following
way

∂pf(x, y)

∂xp
=

n∑
i=0

m∑
j=0

βi,jD
pBi,n(x)Bj,m(y), (7)

and an q-th order derivative in y -axis direction
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∂qf(x, y)

∂yq
=

n∑
i=0

m∑
j=0

βi,jBi,n(x)DqBj,m(y). (8)

Finally mixed derivative of order p+ q is defined as follows:

∂p+qf(x, y)

∂xpyq
=

n∑
i=0

m∑
j=0

βi,jD
pBi,n(x)DqBj,m(y). (9)

This paper deals with elliptic equations, therefore we will define two differential
operators, most common in second and forth order boundary value problems.
Laplacian operator can be written as

∆f(x, y) =
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
=

=

n∑
i=0

m∑
j=0

βi,jBj,m(y)D2Bi,n(x) +

n∑
i=0

m∑
j=0

βi,jBi,n(x)D2Bj,m, (10)

which can further be simplified to

∆f(x, y) =

n∑
i=0

m∑
j=0

βi,j
[
Bj,m(y)D2Bi,n(x) +Bi,n(x)D2Bj,m(y)

]
. (11)

Bicharmonic operator or bilaplacian can be written as

∆2f(x, y) =
∂4f(x, y)

∂x4
+ 2

∂4f(x, y)

∂x2∂y2
+
∂4f(x, y)

∂y4
=

=

n∑
i=0

m∑
j=0

βi,j
[
Bj,m(y)D4Bi,n(x) + 2D2Bi,n(x)D2Bj,m(y) +Bi,n(x)D4Bj,m(y)

]
.

(12)

4 Collocation method formulation

In present method, it is assumed that a variable can be expressed as an approx-
imation in the form of global expansion in tensor product Bernstein polynomial
basis.
We look for the approximate solution in the form (6) for (x, y) ∈ Ω̄ = Ω ∪ ∂Ω.
The expansion coefficients βi,j are unknown, and need to be determined.
The collocation method, that we use to find the unknown coefficients, is a nu-
merical procedure in which we require that solution satisfies differential equation
exactly in a discrete set of points, known as collocation points. Number of col-
location points has to match the number of unknowns.
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If the order of Bernstein polynomial is n and m in x and y-axis directions re-
spectively, then there is nc = (n + 1) × (m + 1) unknown coefficients in global
polynomial expansion. If we are solving homogenous Dirichlet problem the num-
ber of unknown is ncd = (n − 1) × (m − 1) . Reason for this is a property of
Bernstein polynomials that we take the advantage of, namely the property to
vanish at end points, except for the first and the last one, that we mentioned in
Section 2. If the function value at the boundary is equal to zero, we eliminate
the non-vanishing basis functions by setting their associated expansion coeffi-
cients to zero, and continue by solving the problem for the smaller number of
unknowns ncd.
Discretized equation set is obtained by substituting the unknown function and
it’s derivatives with the appropriate representation in Bernstein polyniomial
basis, as described in Section . Substituting these Bernstein polynomial inter-
polants into the original equation set, and applying it at the set of collocation
points, one arrives at a linear system of equations

Ab = c. (13)

An element of the system matrix ai,j is obtained by evaluating the differen-
tial operator on the tensor product of ith and jth Bernstein polynomial basis
function, at the collocation point defined by Cartesian coordinate pair (xi, yi).

ai,j = L [Bi,n(xi)Bj,m(yi)] , i = 1, .., n− 1, j = 1, ..,m− 1. (14)

An element of the right-hand side vector ci is an evaluation of the right-
hand side function at the ith collocation point defined by Cartesian coordinates
(xi, yi).

ci = f(xi, yi), i = 1, ..., ncd. (15)

For the cases other than those with homogenous Dirichlet boundary condi-
tions, the number of unknowns, as being said, is larger and linear system has
the additional rows defined by

ai,j = B [Bi,n(xi)Bj,m(yi)] , (16)

ci = g(xi, yi), (17)

Where coordinates (xi, yi) define colocation points that belong to the domain
boundary. Index pairs (i, j) belong to the set (0, 1...m− 1) ∪ (n, 1...m− 1) ∪
(1...n− 1, 0) ∪ (1...n− 1,m) ∪ (0, 0) ∪ (n, 0) ∪ (0,m) ∪ (n,m). There is in total
2(n+m) additional rows required to specify boundary conditions.
The change in boundary conditions (2), amounts to changing a few rows in the
matrix A, as well as in the right-hand side vector c. Using expressions defined
in Section 3. we may define any type of boundary conditions. In particular, the
operator B takes the form of Eq.(6) when we need to impose Dirichlet boundary
conditions, or (7),(8), with p = q = 1 for Neumann boundary conditions.
Solution vector b is as an auxilliary one-parameter array, it’s values are moved to
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two-parameter array of Bernstein polynomial expansion coefficient β. Mapping
has the following form

βi,j = binode, (18)

Where inode = (m + 1) ∗ (i − 1) + j, and i = 0, ..., n, j = 0, ...,m. If only
inner expansion coefficients are sought for, in the case of homogenous Dirichlet
problems, coefficient mapping takes the same form (18), but the indexes are
defined by inode = (m− 1) ∗ (i− 1) + j− 1, and i = 1, ..., n− 1, j = 1, ...,m− 1.

Finally we note that the distribution of points on a tensor product grid may
be uniform, or non-uniform depending on situation. The full linear system 13
is solved using LU decomposition with partial pivoting.

5 Example Application

Collocation method formulated in previous section is implemented in bernstein-
poly, a library for manipulation of Bernstein polynomials. It is an open-source
code developed by the authors, written in Python [9]. In what follows, we will
present couple of examples, with the purpose to illustrate validity and accuracy
of the present collocation method. In all examples we use the same order of
Bernstein polynomials in both x and y axis direction.

Example 1.

Consider Poisson equation

∆u(x, y) = f(x, y), x, y ∈ [−1, 1], (19)

with homogenous Dirichlet boundary conditions. Source term is defined as
f(x, y) = −2π2sin(πx) sin(πy). Exact solution for the given problem is

uexact = sin(πx) sin(πy) (20)

Fig. 1 shows numerical solution for approximation using Bernstein polynomials
of order n=21. The absolute numerical solution error abserr(i, j) = ‖u(i, j) −
uei,j‖ , where uei,j represents the exact solution, is estimated at each (i, j)th
collocation node, and the result is presented in Fig. 2. To study how accuracy
changes with incresing the order of polynomial approximation we use L2 relative
error norm, defined in the following way

L2Error =

∑n,m
i,j=0

(
ui,j − uei,j

)2∑n,m
i,j=0(uei,j)

2
. (21)

Results of the analysis of L2 relative error norm are sumarized in Table 1.
To study order of accuracy it is useful to plot L2 relative error norm as a
function of polynomial order, n, which is done in log-log plot in Fig. 3. We
observe exponential decay in the error for polynomial orders up to n = 17, after
which the error decrease slows down. Eventually for order of Bernstein basis
polynomials higher than n = 21, after which the error continually grows.
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Figure 1: Bernstein polynomial collocation method solution of Poisson equation
(Example 1), n=20.

Example 2.

In this example we consider the Poisson equation with non-homogenous Dirichlet
boundary conditions. Treatment of this problem differs from the previous one
algorithmically in a way we impose boundary conditions. For every collocation
point at the boundary we write an additional linear equation and we solve linear
system of size (nc)× (nc).
Source term in the Poisson equation (19) for this problem is defined by f(x, y) =
6xy(1 − y) − 2x3, and solution domain by unit square x, y ∈ [0, 1]. The exact
solution for this problem is

uexact = y(1− y)x3 (22)

The figures 4, and 5 show numerical solution and absolute error distribution for
the case of n = 20. very high accuracy is achieved quite ”early”, for n = 12 it
reaches order of 10−15, as seen in Table 2.

Example 3.

Next example problem is defined by the Helmholtz equation

(∆ + λ)u = f(x, y). (23)

The problem is originally found in [10], and is defined by λ = 1, f(x, y) = x,
and non-homogenous Dirichlet boundary conditions which are derived from the
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n L2 rel. error

11 1.171× 10−5

13 3.170× 10−7

15 6.536× 10−9

17 1.049× 10−10

19 5.137× 10−11

21 3.111× 10−11

23 3.966× 10−9

30 3.146× 10−08

41 3.499× 10−07

51 1.091× 10−05

61 1.140× 10−04

71 1.346× 10−04

Table 1: L2 relative error norm for the Example 1.

n L2 rel. error

12 5.841× 10−15

14 2.595× 10−14

16 1.754× 10−13

18 5.039× 10−12

20 1.544× 10−10

30 1.907× 10−8

Table 2: L2 relative error norm for the Example 2.

8



Figure 2: Absolute error (Example 1), n=20.

exact solution. Domain of solution is square x, y ∈ [−π, π]. Using Bernstein
polynomials defined over general interval proves practical for this problem, as
mapping of the domain to the unit square is not necessary.
This problem is exactly solvable and the solution is

uexact = sin(x) + sin(y) + x. (24)

As in previous examples we show numerical solution Fig. 6 and the distribution
of the absolute error Fig. 7. Table 3 lists L2 relative error norm variation with
increasing order of polynomial basis.

Example 4.

In next example we give the solution to biharmonic equation, which is often
encountered in the theory of ellasticity, as it describes deflections of loaded
plates.

∆2u(x, y) = f(x, y). (25)

Two types of boundary conditions can be defined for this problem (I) u and
∂2u/∂n2 or (II) u and ∂u/∂n. Both cases are interesting on their own because
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Figure 3: Example 1. L2 relative error norm.

n L2 rel. error

12 9.035× 10−6

14 2.430× 10−7

16 4.992× 10−9

18 8.107× 10−11

20 4.057× 10−11

22 1.051× 10−9

30 1.533× 10−7

Table 3: L2 relative error norm for the Example 3.

they require different solution approach. We will split discussion on biharmonic
equation in two parts, present Example we will treat Type I and in the next
one Type II boundary conditions.
In the case of Type I boundary conditions, biharmonic equation can be split
into two coupled Poisson equations

∆v(x, y) = f(x, y), (26)

∆u(x, y) = v(x, y). (27)

The first example solution of biharmonic equation, taken from [11], will deal with
the case of simply supported rectangular plate 0 ≤ x ≤ a, 0 ≤ x ≤ b. Homoge-
nous boundary conditions for both the function value and it’s second derivatives
in the direction normal to boundary are prescribed.
Source function, that describes load distribution over the surface in theory of

10
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Figure 4: Solution of Poisson equation, non-homogenous Dirichlet BCs (Exam-
ple 2), n=20.

plates is given by

f(x, y) = π4

(
m2

a2
+
n2

b2

)2

sin
mπx

a
sin

nπy

b
. (28)

Biharmonic equation defined in such a way, allows the exact solution

uexact(x, y) = sin
mπx

a
sin

nπy

b
. (29)

For our purpose we set values m = n = 1, a = b = 1. Example solution for
the order of polynomial, n = 20 is shown in Fig 8. The peaks in the absolute
error near the corner nodes, as noticed in previous examples, is inherent to the
present method, therefore we set an upper limit on the vertical axis here, to
be able to get better picture of the distribution of absolute error in the rest of
domain, Fig. 9. Table 4 shows variation in the error norm, in which the trend
conforms to the one in previous examples.

Example 5

Biharmonic equation that is solved in this example has Type II boundary condi-
tions and cannot be reformulated as a system of two coupled Poisson equations.
This example is also taken from [11]. We will consider two cases, one having
the exact solution
Case 5a:

f(x, y) = 56400(a2 − 10ax+ 15x2)(b− y)2y4
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Figure 5: Absolute error (Example 2), n=20.

n L2 rel. error

10 6.538× 10−8

12 4.854× 10−10

14 2.832× 10−12

16 1.284× 10−12

20 9.467× 10−11

30 5.939× 10−8

Table 4: L2 relative error norm for the Example 4.

+18800x2(6a2 − 20ax+ 15x2)y2(6b2 − 20by + 15y2)

+ 56400(a− x)2x4(b2 − 10by + 15y2), (30)

And one where the exact solution is unknown Case 5b:

f(x, y) = p0 = const, (31)

where p0 takes value of 1000. The notation has physical significance, Example
5b represents the case of a plate clamped at all four sides, and exposed to
uniform load of fluid pressure. Example 5a admits the exact solution

uexact(x, y) = 2350x4(x− a)2y4(y − b)2. (32)

In the assembling procedure, instead of writing the Eq. 14 for the nodes laying
right next to the egde nodes, we use Eq. 16, which to remind once again, uses
(x, y) values of the points on the boundary edge. These edge points are all

12
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Figure 6: Solution of Helmholtz equation, non-homogenous Dirichlet BCs (Ex-
ample 3), n=20.

Figure 7: Absolute error (Example 3), n=20.
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Figure 8: Solution of Biharmonic equation (Example 4), Type I BCs, n=20.

Figure 9: Absolute error (Example 4), n=20.
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Figure 10: Solution of Biharmonic equation (Example 5a), Type II BCs, n=20.

n L2 rel. error

8 2.506× 10−14

10 1.064× 10−14

12 3.773× 10−13

14 1.174× 10−11

20 3.853× 10−10

Table 5: L2 relative error norm for the Example 5a.

immediate neighbours of those collocations points, we would normally write the
equation for. We note that the Neumann boundary conditions are not written
for the corner nodes. Numerical results, consistent with previous examples, is
shown in Fig. 10, Fig. 11 and Table 5. When there is no exact solution, we need
to set up a criteria what solution to except as converged one. In all previous
examples, which allowed exact solution, we see that the high-order accuracy is
achieved by a comparatively small number of nodal points. For 21 nodal point
in each direction (order of polynomial n=20), the L2 relative error norm is of the
order 1010 to 1011. We should have the additional confidence in the result, if the
spatial variation of solution expressed in terms of local maxima and minima,
is not significant within the domain. Fig. 12 shows numerical solution with
Bernstein polynomials or order n=20 in each direction.
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Figure 11: Absolute error (Example 5a), n=20.
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Figure 12: Solution of Biharmonic equation (Example 5b), Type II BCs, n=20.
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6 Conclusions

In this paper a novel formulation of the collocation method using Bernstein
polynomials is proposed. The main reason why the collocation method is cho-
sen, are it’s flexibility and simple implementation. The methodology presented
in this paper has been implemented in bernstein-poly code [9], and several ex-
amples have been shown, where the elliptic boundary value problems in two
dimensional domains were succesfully solved. Numerical results obtained by
this method were compared with existing exact solutions. Excellent agreement
and high accuracy is achievent even with small number of basis polynomials.
Trough extstensive testing we have concluded that the three components of
the algorithm used here: defining polynomials over general interval, the non-
recursive formulation for derivatives and the use of multiplicative formula for
individual binomial coefficients significantly enhance capabilities of the present
procedure related to the previous Bernstein polynomial methods in terms of the
flexibility and speed.
As we have seen in log-log plots of L2 relative error norm in all examples, the
error decreases exponentially as the order of polynomial increases, until, around
n = 17− 20, when it changes the character and continually increases for higher
values of n. We noticed the same character of error variation with n in all
the examples above, which is related to the loss in accuracy in floating-point
arithmetics with large numbers originating from factorials in the definition of
Bernstein polynomials. This suggest further direction of investigation - devel-
oping a method based on a principle of domain decomposition. In that case in
each ”element” we would keep moderate degree in Bernstein polynomial, and
the method would resemble spectral element method. Similar has been done
e.q. [12], where Chebyshev multidomain method has been put forward. That
study has served as a basis for development Spectral Difference Method. An-
other advantage of the domain decomosition approach is that it produces sparse
matrices, with the sparsity pattern usual for tensor product grid discretizations.
Future plan is to develop bernstein-poly to the point where highly accurate so-
lution of Navier-Stokes equations in complex three-dimensional domains is pos-
sible.
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Appendix A. Implementation of a new BVP in
bernstein-poly

Setting up a new elliptic boundary value problem in bernstein-poly code [9] is
briefly described here on the case of Poisson equation presented in the Example
3. Main program is located in collocation test 2D.py, where the user needs to
define solution domain by specifying it’s x and y axis extents, and the order of
approximating polynomials - n.

Listing 1: Setting up domain borders and approximating polynomial order.

1 # Bernstein polynomial order − the same order in both directions.
2 n = 12
3 m = 12
4 # The number of unknowns − all nodes counted for the case with non−homogenous BCs.
5 nvar = (n+1)∗(m+1)
6 ...
7 # Solution interval [x1,x2] x [y1,y2].
8 x1 = 0.
9 x2 = 1.

10

11 y1 = 0.
12 y2 = 1.
13 ...
14 # Uniform mesh.
15 nd = linspace(x1,x2,n+1)

Specifying the problem generaly described by Eq. (1) is straight-forward:

Listing 2: Defining RHS vector entry

1 def rhs(x,y):
2 return −(6∗x∗y∗(1−y)−2∗x∗∗3)

Listing 3: Defining system matrix entry

1 def lhs(i,j,n,m,x1,x2,y1,y2,x,y):
2 return −laplacian(i,j,n,m,x1,x2,y1,y2,x,y)

Listing 4: Defining the exact solution.

1 def exact solution(x,y):
2 return y∗(1−y)∗x∗∗3

Boundary conditions have to be specified next. First we’ll have a look how
does the LHS matrix and RHS vector assembly look like (Listings 5 and 6).

Listing 5: Forming RHS vector in the main function.

1 f = zeros(nvar) # RHS vector
2 for i in range(0,n+1):

18



3 x = nd[i]
4 for j in range(0,m+1):
5 y = nd[j]
6 node = (m+1)∗(i−1)+j
7 # Non−homogenous BCs...
8 if (i==0):
9 # Left side:: Run trough all betas

10 f[node] = bc left(x,y)
11 elif (j==0):
12 # Bottom:: Run trough all betas
13 f[node] = bc bottom(x,y)
14 elif (i==n):
15 # Right: Run trough all betas
16 f[node] = bc right(x,y)
17 elif (j==n):
18 # Top: Run trough all betas
19 f[node] = bc top(x,y)
20 else:
21 f[node] = rhs(x,y)

Listing 6: Forming system matrix

1 K = zeros( (nvar,nvar) ) # LHS matrix
2 for i in range(0,n+1):
3 x = nd[i]
4 for j in range(0,m+1):
5 y = nd[j]
6 node = (m+1)∗(i−1)+j # node defines specific location on a grid
7 # Non−homogenous BCs...
8 if (i==0):
9 # Left side:: Run trough all betas

10 for k in range(0,n+1):
11 for l in range(0,m+1):
12 jfun = (m+1)∗(k−1)+l
13 K[node,jfun] = Dirichlet(l,k,n,m,x1,x2,y1,y2,x,y)
14 elif (j==0):
15 # Bottom:: Run trough all betas
16 for k in range(0,n+1):
17 for l in range(0,m+1):
18 jfun = (m+1)∗(k−1)+l
19 K[node,jfun] = Dirichlet(l,k,n,m,x1,x2,y1,y2,x,y)
20 elif (i==n):
21 # Right: Run trough all betas
22 for k in range(0,n+1):
23 for l in range(0,m+1):
24 jfun = (m+1)∗(k−1)+l
25 K[node,jfun] = Dirichlet(l,k,n,m,x1,x2,y1,y2,x,y)
26 elif (j==n):
27 # Top: Run trough all betas
28 for k in range(0,n+1):
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29 for l in range(0,m+1):
30 jfun = (m+1)∗(k−1)+l
31 K[node,jfun] = Dirichlet(l,k,n,m,x1,x2,y1,y2,x,y)
32 else:
33 # Interior: Run trough all betas
34 for k in range(0,n+1):
35 for l in range(0,m+1):
36 jfun = (m+1)∗(k−1)+l
37 K[node,jfun] = lhs(l,k,n,m,x1,x2,y1,y2,x,y)

Listing 7: System matrix entry originating from the boundary operator (2)

1 def Dirichlet(i,j,n,m,x1,x2,y1,y2,x,y):
2 # Matrix entry for Dirichlet BCs:
3 return basis fun eval(i,n,x1,x2,x)∗basis fun eval(j,m,y1,y2,y)
4

5 def Neumann y dir(i,j,n,m,x1,x2,y1,y2,x,y):
6 # Matrix entry for Neumann BCs:
7 return basis fun eval(i,n,x1,x2,x)∗basis fun der(1,j,m,y1,y2,y)

RHS vector entry for the collocation point located at domain boundary is
evaluated according to function g(x) Eq. (2).

Listing 8: Evaluating RHS vector entry for the points on domain boundary.

1 def bc right(x,y):
2 # Boundary condition for right edge of the rectangle
3 return y∗(1−y)

The beauty of the proposed method and it’s Python implementation, is that
non-trivial problems descibed using PDEs are solved in a very small number of
command lines. The guiding principle behind the development of the code is
modularity and escalation towards solution of problems with greater complexity.
Readers are encouraged to use and upgrade bernstein-poly in their own research.
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